Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview
نویسندگان
چکیده
Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.
منابع مشابه
Coupled Terrestrial Carbon and Water Dynamics in Terrestrial Ecosystems: Contributions of Remote Sensing
The Earth climate is a complex, interactive system, determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The terrestrial biosphere plays many pivotal roles in the coupled Earth system providing both positive and negative feedbacks to climate change (Treut et al., 2007). Terrestrial vegetation via photosynthesis conv...
متن کاملEquilibration of the terrestrial water, nitrogen, and carbon cycles.
Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere's behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, sho...
متن کاملNitrogen attenuation of terrestrial carbon cycle response to global environmental factors
[1] Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon s...
متن کاملHydrochemical modeling of coupled C and N cycling in high-elevation catchments: Importance of snow cover
Several ecosystems in the western US are already undergoing nitrogen (N) saturation, a condition where previously N limited ecosystems are no longer N limited. This state of N saturation leads to adverse impacts on terrestrial ecology and water quality. Due to the complexities of terrestrial carbon-nitrogen cycling, integrated hydrologic-biogeochemical modeling provides a tool to improve our un...
متن کاملThe Global Phosphorus Cycle
Phosphorus (P) is a limiting nutrient for terrestrial biological productivity that commonly plays a key role in net carbon uptake in terrestrial ecosystems (Tiessen et al. 1984, Roberts et al. 1985, Lajtha and Schlesinger 1988). Unlike nitrogen (another limiting nutrient but one with an abundant atmospheric pool), the availability of “new” P in ecosystems is restricted by the rate of release of...
متن کامل